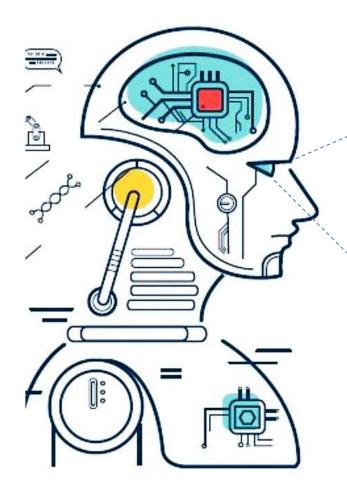
Roadmap to 400G Optics ...and Beyond Green & Sustainable

Salim Janbeh RCDD[®]/ DCDC[®]/NTS[®]/CDCDP[®]/ATD[®] Physical Infrastructure Consultant

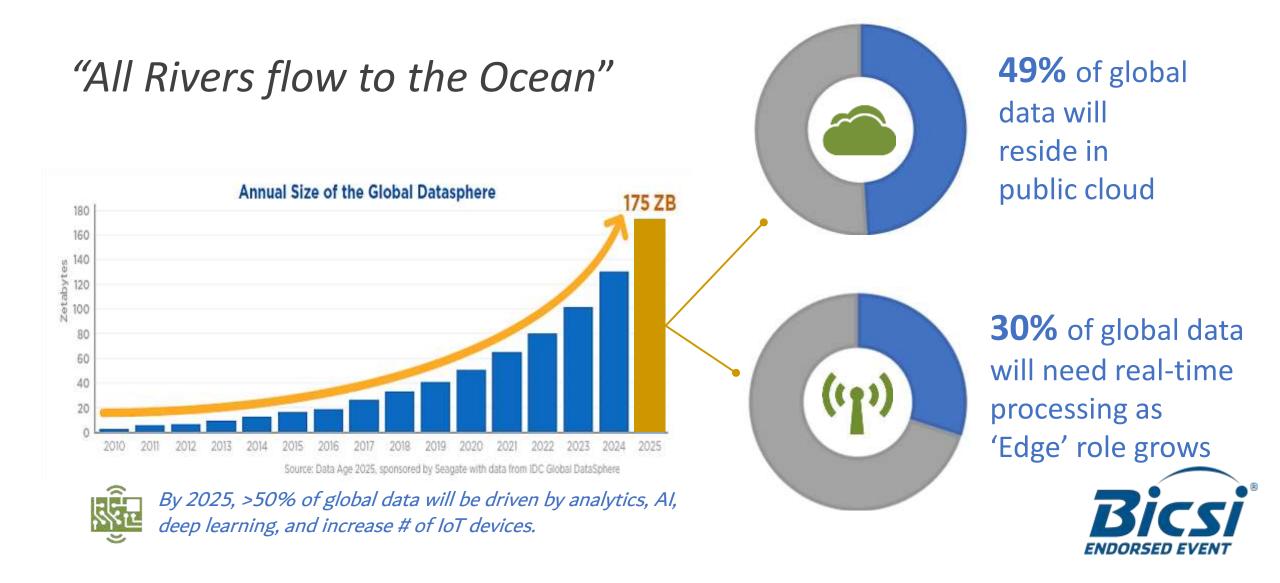
Agenda

- Ethernet Roadmap
- VSFF Connector & Transceiver Update
- 400G Market/Technology Update
- 400G & 400G+ Roadmap
- Switch/Server Breakout Application
- Structured Cabling Support
- Q&A

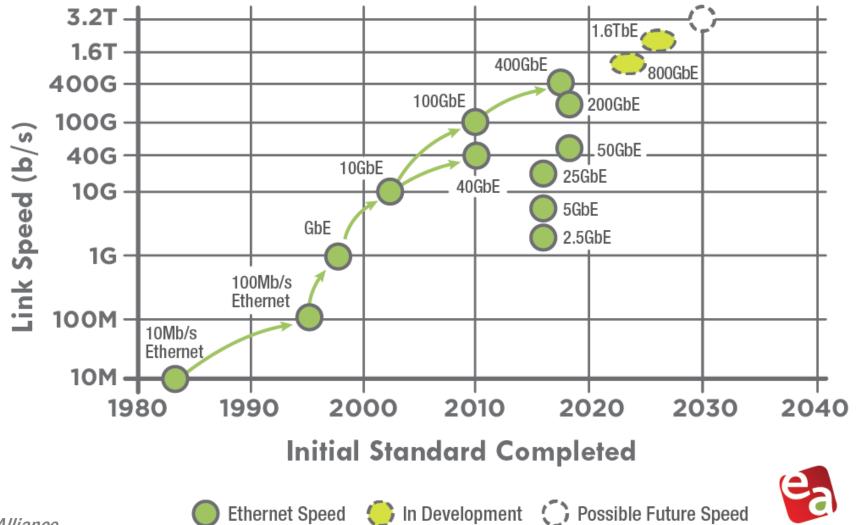


Ethernet Roadmap

Bandwidth Growth Drivers


Al traffic (such as ML) accounts for more than 50% of the total traffic'.

'Google; networks shows 40% server traffic growth


Source: Lightcounting

Global Datasphere – Digital Transformation

Ethernet Roadmap

ETHERNET SPEEDS

VSFF Fiber Connector & Transceiver Update

Very Small Form Factor (VSSF) Connectors

Name	Image	ΤΙΑ	IEC	MSA	
MDC	Recorded and a second and a s	0	IEC 61754-37	•	KEY
SN		0	IEC 61754-36	•	 Published Standard Standard in Process
CS		TIA-604-19	0		O No Published Standard
МРО	MPO24 MPO12 (or 8) MPO16	TIA-604-18	IEC 61754-7-4		

MSA – Multi Source Agreement. Including QSFP-DD & OSFP

TIA – Telecommunication Industry Association. TIA FOCIS' connector standards

IEC – International Electrotechnical Commission. Connector standards

'Secret' Decoder Pin

wGBASE-xRy.z example: 400GBASE-SR4.2

w = data rate :

- 10 Gbit/s
- 25 Gbit/s
- 50 Gbit/s
- 100 Gbit/s
- 200 Gbit/s
- 400 Gbit/s
- 800 Gbit/s

x = reach :

MMF

– S = 100m

- V = 30-50mSMF
- D = 500m
- -F = 2km
- L = 10km
- E = 40km
- Z = 80km

- y.z = lane count (fiber/wavelength) :
 - y = number of fiber pairs
 - y = 4 fiber pairs (8 fibers Tx/Rx)
 - z = number of wavelengths

Optical transceiver module

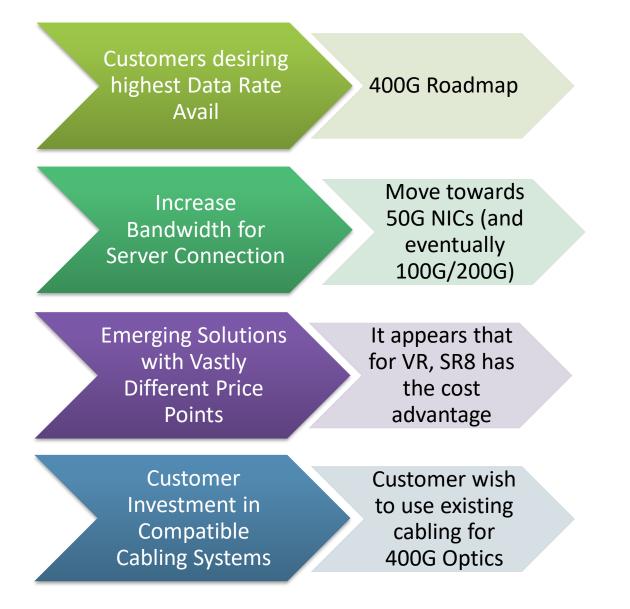
	Backplane	Twinox Cable	15-40m(OT) Single Twisted Pair	>100m (OT) Single Twisted Pair	100m (IT) Twisted Pair (2/4 Pair)	MMF	500m PSM4	2km SMF	10km SMF	20km SMF	40km SMF	80ium SMF	Electrical Interface	Pluggable Module	
10BASE-	TIS		TIS	ти	т									,	
100BASE-			TI	TIL	Т							(<u> </u>			
1000BASE			TI		Т									SFP	
2.5GBASE-	КХ		TI		Т									SFP	
5GBASE	KR		TI		Ţ									SFP	
10GBASE-			TI		T	SR			-BR10-D/U LR	-BR20-D/U	-BR40-D/U ER			SFP	
25GBASE-	KR1 KR	CR1 CR/CR-S	п		T (30m)	SR			LR EPON -BR10-D/U	EPON -BR20-D/U	ER -BR40-D/U		25GAUI	SFP	
40GBASE-	KR4	CR4			T (30m)	SR4/eSR4	PSM4	FR	LR4		ER4		XLAUI XLPPI	QSFP	
50GBASE-	KR2 KR	CR2 CR				SR		FR	EPON LR -BR10-D/U	EPON -BR20-D/U	ER -BR40-D/U		LAUI-2/50GAUI-2 50GAUI-1	SFP/QSFP	
100GBASE-	KR4 KR2 KR1	CR10 CR4 CR2 CR1				SR10 SR4 SR2 VR1 SR1	PSM4 DR	CWDM4 FR1	LR4 4WDM-10 LR1	4WDM-20	ER4/ 4WDM-40	ZR	CAUI-10 CPPI CAUI-4/100GAUI-4 100GAUI-2 100GAUI-1	SFP/SFP-DD QSFP/QSFP-DD OSFP	
200GBASE-	KR4 KR2	CR4 CR2 CR1				SR4 VR2 SR2	DR4 DR1	FR4 FR1	LR4		ER4		200GAUI-4 200GAUI-2 200GAUI-1	QSFP/QSFP-DD SFP-DD	
400GBASE-	KR4	CR4 CR2				SR16 SR8/SR4.2 VR4 SR4	DR4 DR2	FR8 FR4 400G-FR4 DR4-2	LR8 LR4-6 400G-LR4-10		ER8	ZR	400GAUI-16 400GAUI-8 400GAUI-4 400GAUI-2	QSFP/QSFP-DD OSFP	
800GBASE-	ETC-KR8 KR8	ETC-CR8 CR8 CR4				VR8 SR8	DR8 DR4	DR8-2 DR4-2 FR4	TBD		TBD		800GAUI-8 800GAUI-4	Garr	
1.6TBASE-		CR8					DR8	DR8-2					1.6TAUI-16 1.6TAUI-8	QSFP/QSFP-DD OSFP/OSFP-XD	

DD

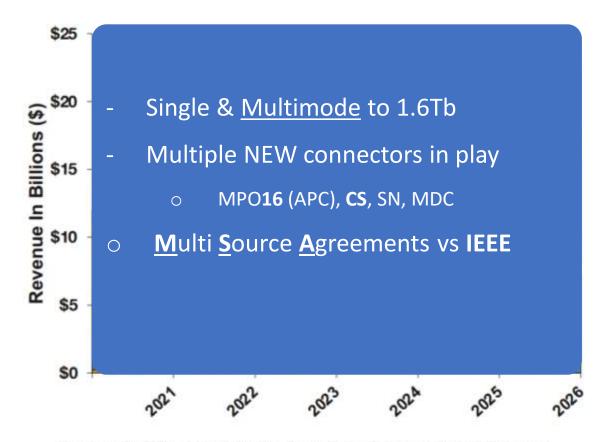
ea

Gray Text = IEEE Standard Red Text = In Task Force Blue Text = Non-IEEE standard but complies to IEEE electrical interfaces * Note: As of publication, subject to change

Green Text = In Study Group

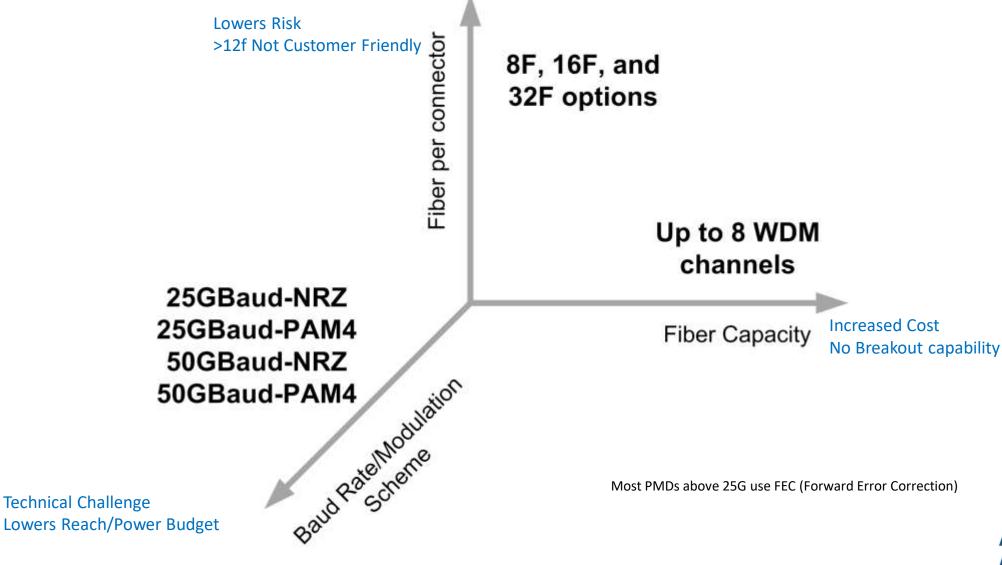

Source: Ethernet Alliance

400G Market/Technology Update


40G/100G/400G Market Insights

High Speed Ethernet Switch Forecast

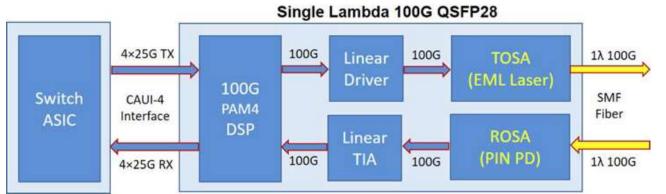
Market Potential by Speed Data Center Ethernet Switch Revenue (\$B)



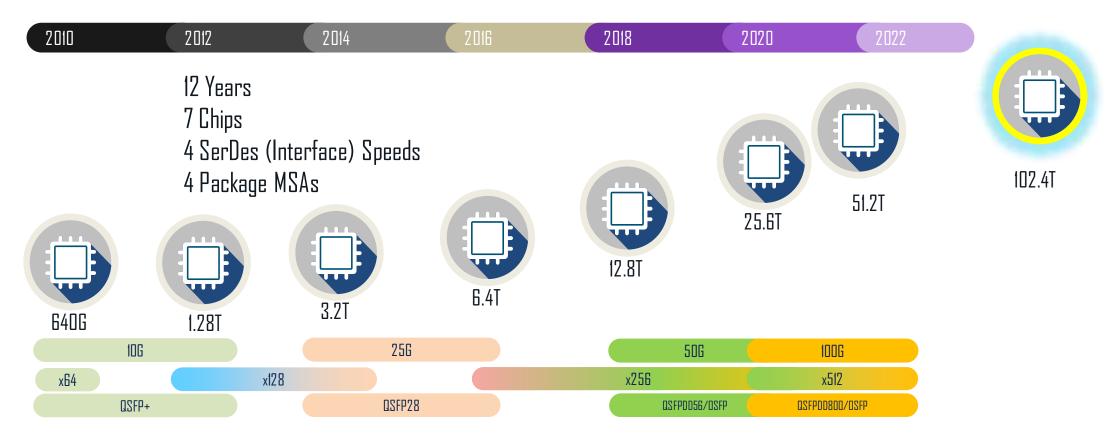
Source: Dell'Oro March 2022 - Long Term Ethernet Switch Forecast Note - Initial 800 Gbps shipments will not be using 800 G Ethernet MAC and will be configured mostly as 2x400 Gbps or as 8x100 Gbps

- Hyperscale drives early adoption
- <u>Breakout</u> mode efficiencies
 - Lowest cost per Gb
 - Save space
 - Save time
 - Save power \$'s (green)

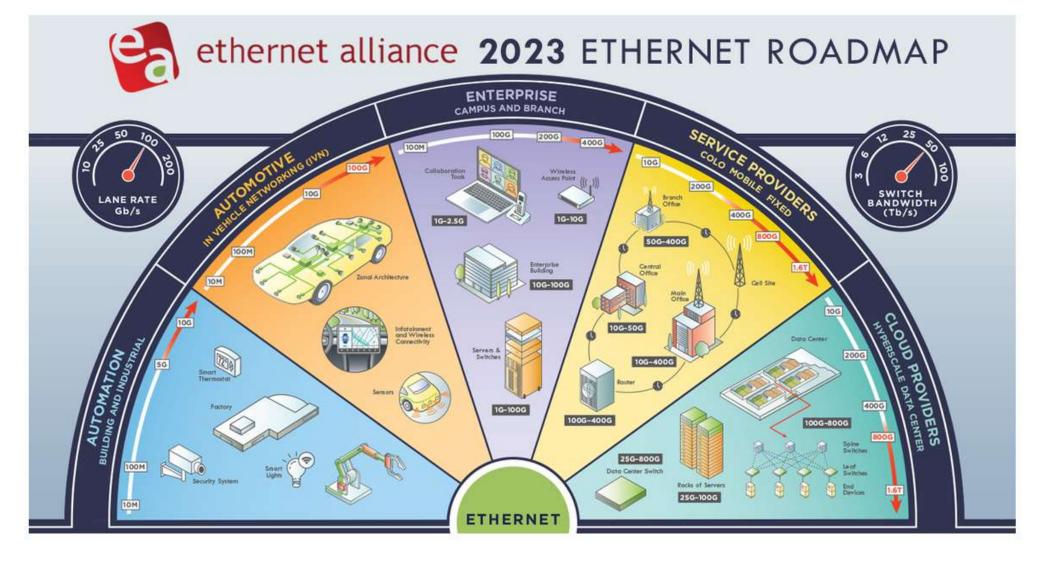
>10G 'Toolbox'


100G QSFP28 "Single Lambda"

100G Lambda MULTI-SOURCE AGREEMENT


IEEE P802.3cu Working group for SMF PAR Approved for MMF: http://www.ieee802.org/3/100GSR/Objectives Approved by 100GSR SG Jan 2020.pdf Ethernet Alliance prize to be awarded to the first company who publicly demonstrates a <3.5 W QSFP28+ 100 Gb/s transceiver module with CAUI-4 electrical interface using a single wavelength of light (100 GBASE-FR1/100 GBASE-SR1).

100G single lambda offers the simplest architecture, reliability/upgrade path to 400G optical Ethernet while enabling commercially viable lowest cost 100G pluggables.



Switch ASIC Advancement

400G & 400G+ Roadmap

MMF Higher Data Rates = Higher Fiber Counts

Technology (per fiber) Lane Rate	1 Fiber Pair	2 Fiber Pairs	4 Fiber Pairs	8 Fiber Pairs	
25G-λ NRZ	25G-SR		100G-SR4		
50G-λ PAM4	50G-SR	100G-SR2	200G-SR4	400G-SR8	
2x50G-λ PAM4			400G-SR4.2 (BiDi)		
100G-λ NRZ	100G-SR	200G-SR2	400G-SR4	800G-SR8	
2x100G-λ PAM4	200G-SR1.2	400G-SR2.2	800G-SR4.2	1.6T-SR8.2	

Existing IEEE Standards
In Progress (est. 2022)
In Progress (est. 2025)
In Progress (est. 2027)

SRm.n m = # of Fiber Pairs n = # of Wavelengths

400G/800G & Beyond Module Roadmap

Focus on Low-Cost/Shorter Reach Options for L-S & Server Interconnect

	Lane Rate Gb/s	Nomenclature	Lane Rate Gb/s	Number of Fiber Pairs	Connector	Number of Wavelengths	Year Standardized	Max. Reach meters (OM4)
	400	400GBASE-SR4	100	4	MPO-12	1 (850 nm)	TBD	TBD
Multimode	800	800GBASE-VR8	100	8	MPO-16	1 (850 or 940)	2025	50
	800	800GBASE-SR8	100	8	MPO-16	1 (850 nm)	802.3df	100
	800	800G-VR4.2	100	4	MPO-12	2 (850 and 910 nm)	2023	50
	800	800G-SR4.2	100	4	MPO-12	2 (850 and 910 nm)	Terabit BiDi MSA	70
	1600	1.6T-SR8.2	100	8	MPO-16 or 2xMPO-12	2 (850 and 910 nm)	Terabit BiDi MSA	70
Singlemode	800	800GBASE-DR8	100	8	MPO-16	1	2025 802.3df	500
	800	800GBASE-DR8-2	100	8	MPO-16	1	2025 802.3df	2000
	800	800GBASE-DR4	200	4	MPO-12	1	2026 802.3dj	500
	800	800GBASE-DR4-2	200	4	MPO-12	1	2026 802.3dj	2000
	800	800GBASE-FR4	200	1	Duplex	4	2026 802.3dj	2000
	1600	1.6TBASE-DR8	200	8	MPO-16	1	2026 802.3dj	500
	1600	1.6TBASE-DR8-2	200	8	MPO-16	1	2026 802.3dj	2000

400G/800G & Beyond Module Roadmap

Observations/Notes/Stream of Consciousness

- SR8 & VR8 PMDs are targeted at <u>displacing copper solutions</u> in switch to server applications at 50G or greater
- All the multimode 800G PMDs depend on 100G single lambda optics (ecosystem not mature & reach unknown...very much behind the maturity of single lambda singlemode optics)
- DR8 optics are taking hold in Hyperscale
- 200G single lambda singlemode optics is and will ultimately drive the majority of shorter reach Leaf-Spline application that require 800G/1.6T

Next Generation Standard, 802.3df (MMF)*

Physical Medium Dependent (PMD) sublayer and Media Type:

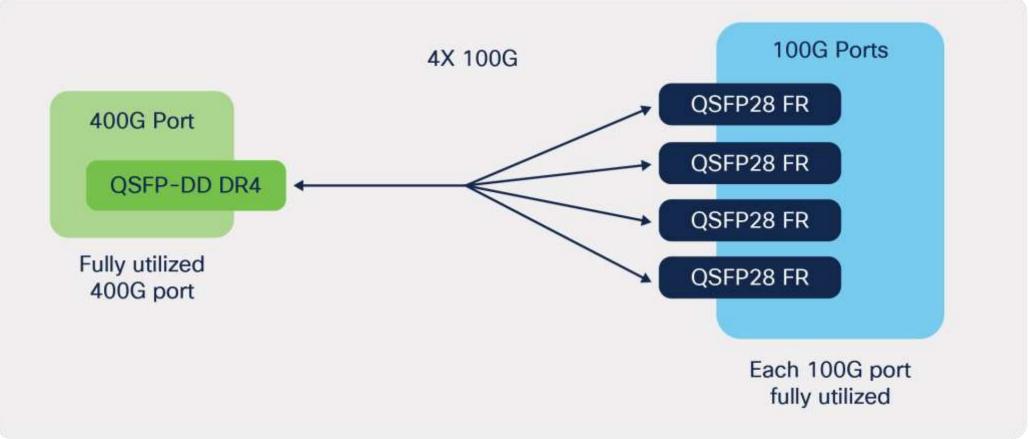
VR (Very short reach)SR (Short reach)100GBASE-VR1100GBASE-SR1200GBASE-VR2200GBASE-SR2400GBASE-VR4400GBASE-SR4800GBASE-VR8800GBASE-SR8

*All dependent of arrival of cost-effective MMF "Single Lambda Optics"

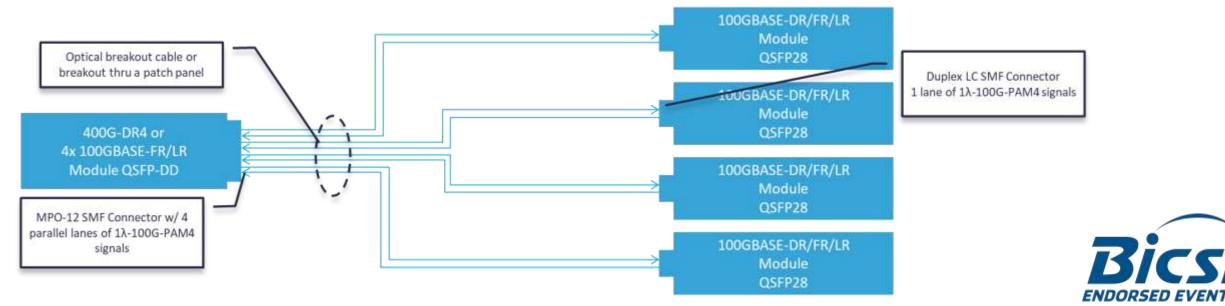
400G Module Lineup

DELL EMC TRANSCEIVERS

Model	Connector Type	Wavelength(s) (nm)	Transmission Medium	Distance (max.)	Transmitter Power (dBm)	Receiver Power (dBm)	Power Dissipation (max.; W)	Notes
400-Gigabit Et	hernet QSFP5	6-DD transceivers						
Q56DD-400G- SR8	MPO-12DD	850	MMF OM3 MMF OM4	70 m 100 m	-6.0 to +4.0 /lane	-8.4 to +4.0 /lane	12.0	MPO-12DD is a two-row double density MPO-12
Q56DD-400G- SR4.2-ON*	MPO-12	850 910	MMF OM3 MMF OM4 MMF OM5	70 m 100 m 150 m	-6.2 to +4.0 /lane	-8.2 to +4.0 /lane	10.0	compatible with Q28-100G-BIDI- ON for 1 × 4 breakout
Q56DD-400G- EDR4	MPO-12	1310	SMF	2 km	-2.4 to +4.0 /lane	-6.4 to +4.5 /lane	12.0	compatible with Q28-100G- FR for 1 × 4 breakout
Q56DD-400G- FR4	duplex LC	1271 1291 1311 1331	SMF	2 km	-3.3 to +3.5 /lane	-7.3 to +3.5 /lane	12.0	



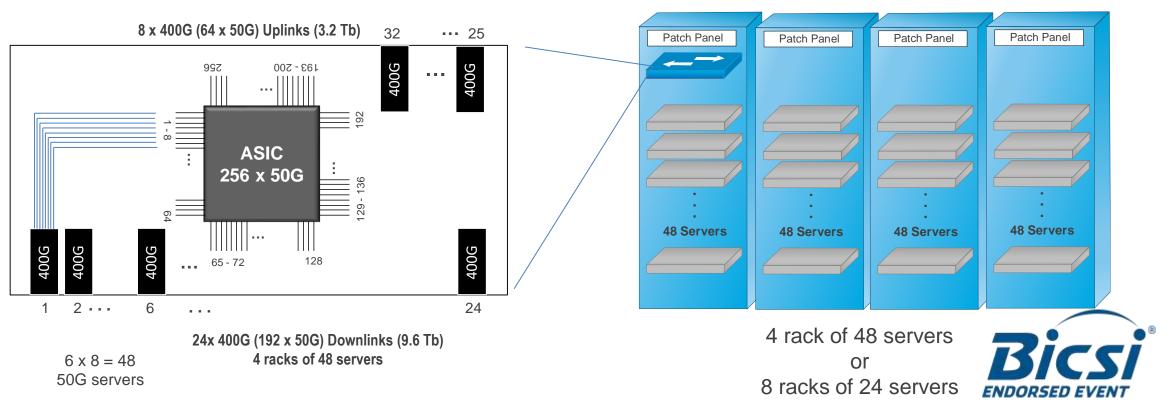
*ON: This module is designed for use in an "open network" environment, meaning that it is not tied to any specific vendor or proprietary technology.


Switch/Server Breakout Application

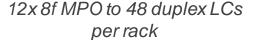
What is a Breakout?

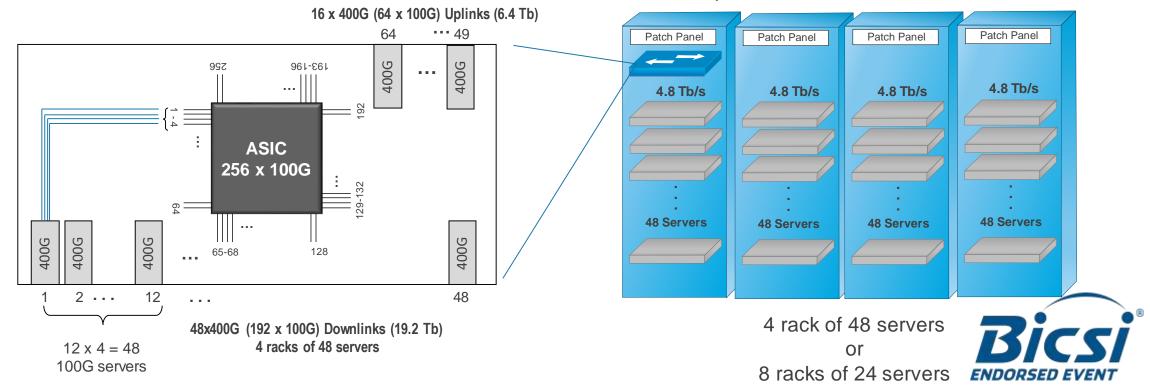
- Breakouts are when an Ethernet port on a line card is configured as a multiple number of lower speed interfaces
- Breakouts are typically enabled by a pluggable module that can support multiple fiber connections
- Each fiber pair operates as an individual Ethernet connection
 - 400G-DR4 module can be used as four 100G modules in a single port

Why Breakout?

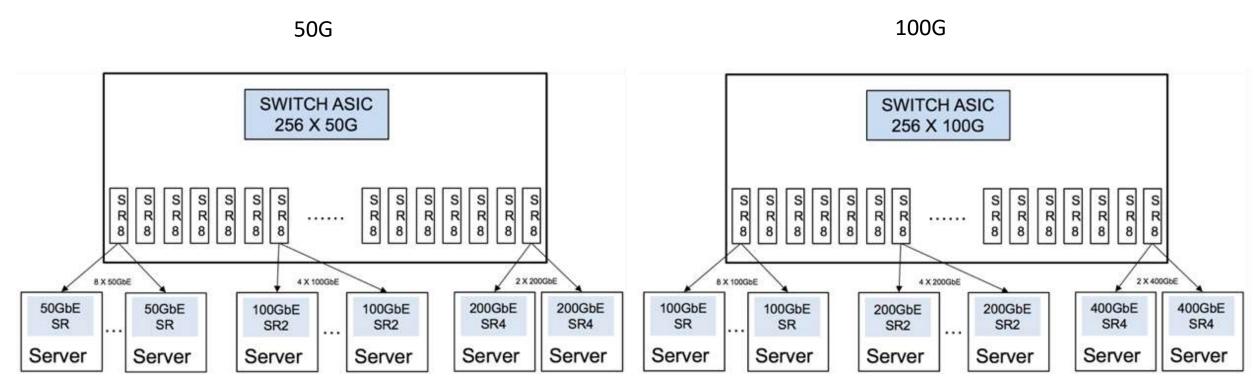

- Manage the migration to next gen platform
- Breakouts can increase the Radix of a switch, providing the opportunity to flatten network architecture
- High front panel density
 - A 400G QSFP-DD 400G-DR4 provides the highest density 100G module available on the market
 - Capability of 4x 100G modules in 18mm wide module more than twice the density of an SFP112 module (13mm width)
 - 32 port switch can aggregate 128 x 100GE lanes in a single RU

Application: 256 x 50G Switch Radix – 3:1 over subscription


- High density 32x400G port switch
- 50G servers supported by
 - 400G-SR8 to 50G-SR breakout

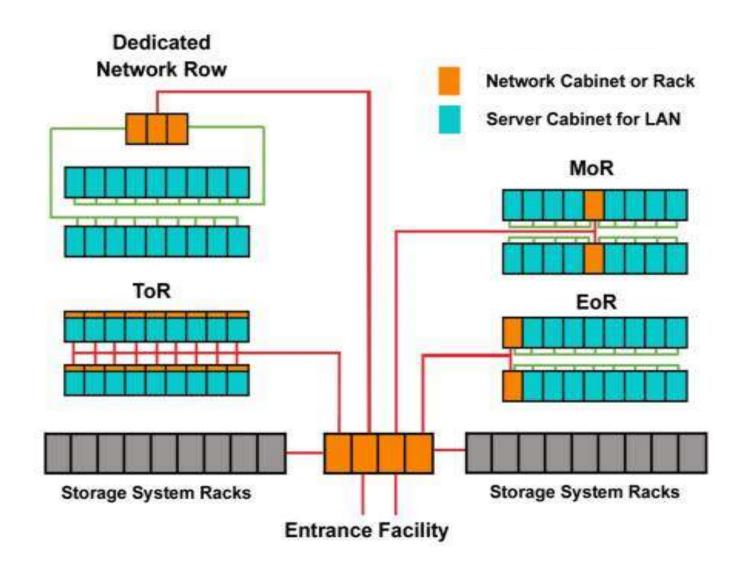

6 switch ports / Rack 6x 16f MPO to 48 duplex LCs

Next-gen application: 256 x 100G Radix Switches


- High density 64 x 400G port spine switch (25.6 Tb/s)
- 100G servers supported by single-mode PMDs
 400GBASE-DR4 (802.3bs) & 100GBASE-DR (802.3cd) breakout
- Maximum required reach: 30m
- 800G PMD reduces number of ports to 32

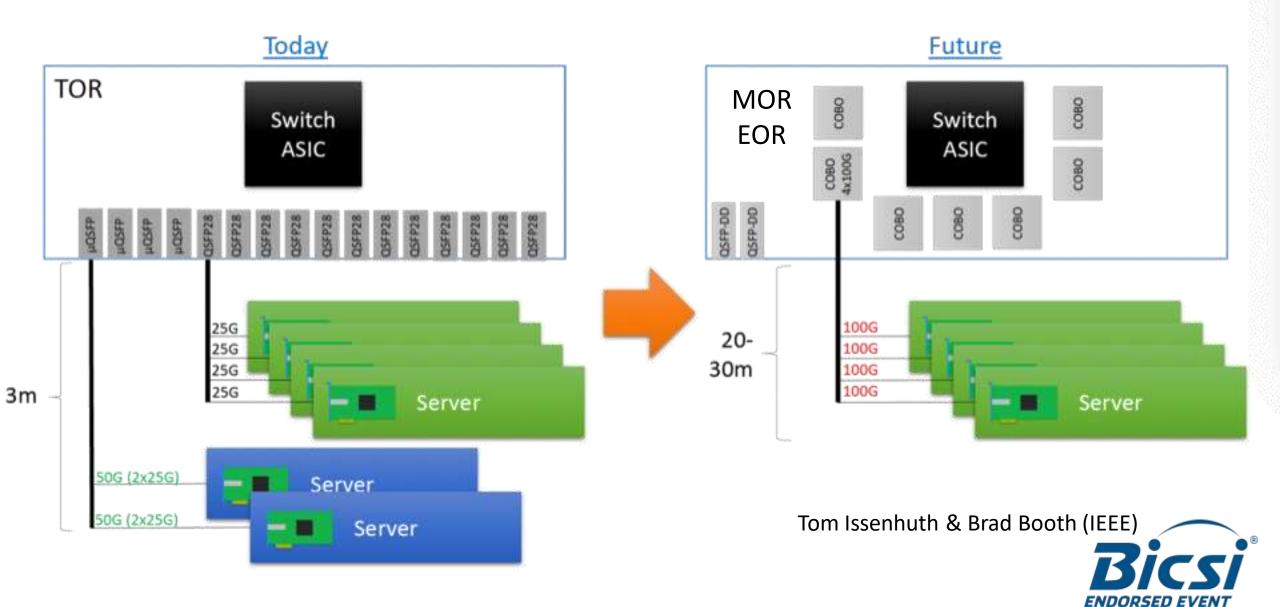
SR8 Optics Switch Port Consolidation for Breakout

Switch Radix over the last 9 years has increased from 64x10G, 128x25G, now to 256x50G, 256x100G and soon to 512x100G

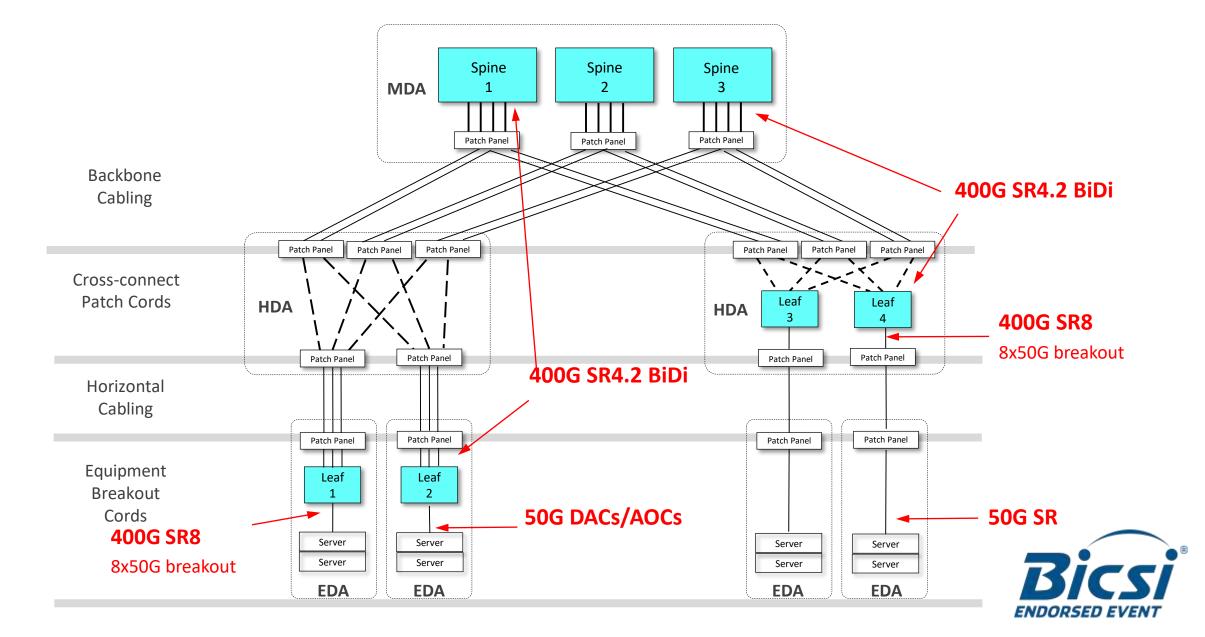


ENDORSED E

Server attachment rates can be selected by grouping a number of SR8 ports together as required with structured cabling and this cabling becomes migratable as lane rates increase


Structured Cabling Support

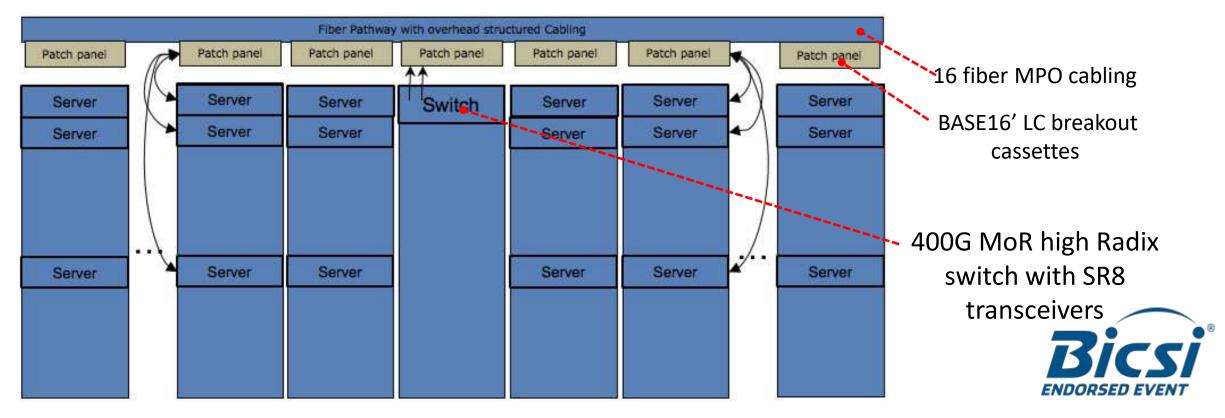
Leaf/Spine and Switch/Server Use Cases for Optical Modules

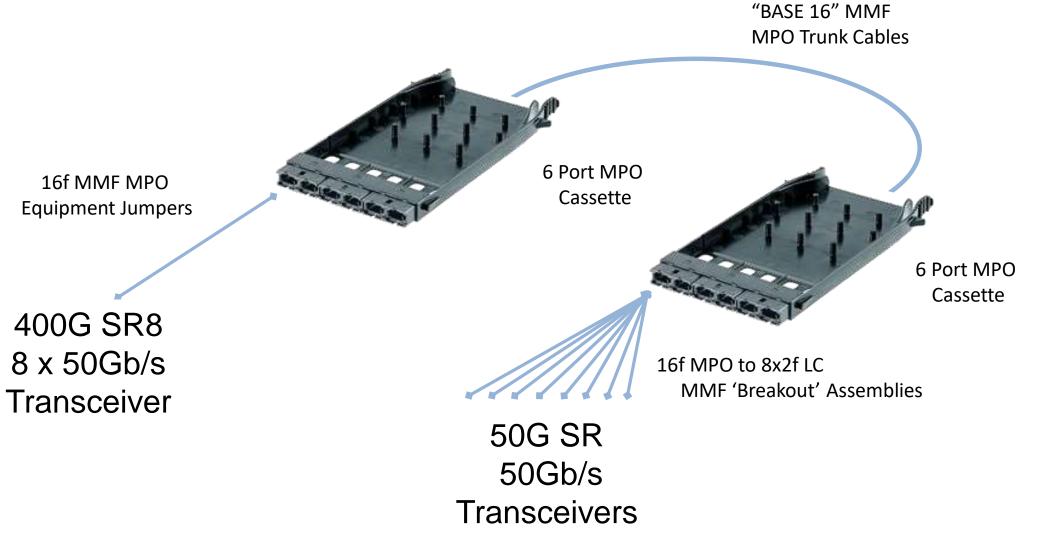


Breakout Use Case - Servers

50G/400G Future PAM-4 Ecosystem for MMF

Customer Benefits of 400G SR8

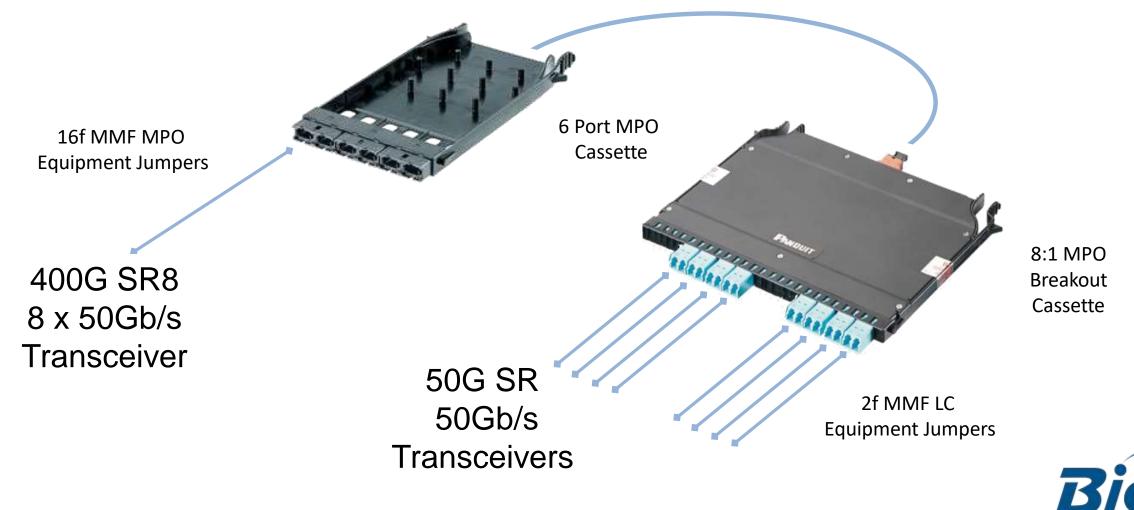

- Enables higher density 50G server ports using 8:1 breakouts from a 400G SR8 optic (e.g.- a single 32 port 1RU modular 400G switch can enable 256, 50G ports/RU - High Radix)
- A reduction of the number of optical links and supporting cable plant (patch panels and connectors) by factor of 8 when compared to 50G switches
- A 4-fold increase in aggregate switch bandwidth
- A 2-4X lower initial installed cost and significant reduction operating expenses (dramatically lower power per gigabit)


SR8 Technology Simplifies Server Pod Build

Move switch from ToR to EoR/MoR to more efficiently consume Radix

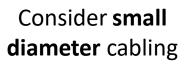
- Reduce Number of switch (Go Green)
- Agile Network by Simplifying architect
- Enables pre-terminated distribution cabling supporting multiple line rate generations
- Allow breakouts in cassettes to support various server data rates (50/100/200G)

400G-SR8 to 50G SR1 Server NIC Breakout

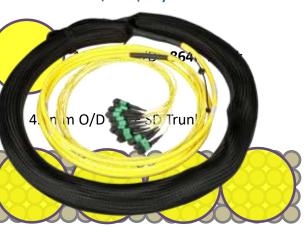


400G-SR8 to 50G SR1 Server NIC Breakout

(16f MMF infrastructure with 16f & LC Duplex EDAs) - Preferred Approach


"BASE 16" MMF MPO Interconnect Cables

ENDORSED EVENT



Connectivity spotlight

X4 more glass Parallel (vs Duplex)

Solve fibre

densification challenge.

Mitigate circuit risk

PanMPO 2.0™

MMF/SMF

Stay flexible/ Pre-terminated/ premodular configured

> Increase density up to 50% 144F/192F/ 216F per RU

> > CS Connector

Family SMF/MMF

Go 'white'

Save energy power (lighting) efficiency

HD Flex™

Split tray ½ circuit risk

MMF the strong contender <150m

HD Flex™ Zone/Floor Box

Wrap Up

- 400G is needed and will produce more efficient data centers links needed for the high traffic expected in this decade
- 400G deployment take off in 2020
 - Dell'Oro group indicates by 2023 to reach 15 million ports
- Start with Hyperscale but as cost reduces, deployment for colocation and premises data center expected
- 400G and beyond will eventually reduce number of deployed leaf switches (Cutting Power/operation cost, save space and simplify Switch to server Network Architect)
- Continues research for higher speed MMF connections started almost a decade ago
 - Currently developing faster solutions (2X) to be deployed in 2025
 - We expect future applications MMF at higher speeds

Thank you

PANDUIT®

building a smarter, unified business foundation

